skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lauderdale, Jonathan_Maitland"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ocean’s Meridional Overturning Circulation (MOC) brings carbon- and nutrient-rich deep waters to the surface around Antarctica. Limited by light and dissolved iron, photosynthetic microbes incompletely consume these nutrients, the extent of which governs the escape of inorganic carbon into the atmosphere. Changes in MOC upwelling may have regulated Southern Ocean outgassing, resulting in glacial-interglacial atmospheric CO2oscillations. However, numerical models that explore this positive relationship do not typically include a feedback between biological activity and abundance of organic chelating ligands that control dissolved iron availability. Here, I show that incorporating a dynamic ligand parameterization inverts the modelled MOC-atmospheric CO2relationship: reduced MOC nutrient upwelling decreases biological activity, resulting in scant ligand production, enhanced iron limitation, incomplete nutrient usage, and ocean carbon outgassing, and vice versa. This first-order response suggests iron cycle feedbacks may be a critical driver of the ocean’s response to climate changes, independent of external iron supply. 
    more » « less